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Effect of backflow on the orientational and dissipation processes in Langmuir films
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The numerical study of the system of hydrodynamic equations that include both director motion and fluid
flow, for a number of dynamic regimes in the 4-n-pentyl-4'-cyanobiphenyl multilayer film on the water surface
has been carried out. Calculations show that the relaxation time over which the torques exerted per unit of
liquid crystals volume puts the director i to be normal to the air-water interface, is one order of magnitude less
in the case of accounting for the backflow effect than without accounting for that effect. The role of the charged
water surface potential on the orientational relaxation process in the SCB multilayer film on the water surface

also has been investigated.
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I. INTRODUCTION

The flow behavior of monolayer (multilayers) liquid crys-
tal (LC) films at the air-fluid interface is of fundamental and
technological significance [1,2]. Many applications of ultra-
thin films require the fabrication of films with a high degree
of orientational order and it has become apparent over years
that the orientational order processing of Langmuir films at
the air-water interface can influence the orientational relax-
ation phenomena in the LC films. In absence of an external
flow, the relaxation of the director i(r,?) to their equilibrium
orientation fi.,(r) in the LC film on the water surface, for
instance, during the lateral compression of the film, is gov-
erned by elastic, electric, and viscous torques exerted per
unit of LC’s volume. If the director is disturbed during com-
pression, or by the laser beam pulse, and then allowed to
relax, these torques vanish when the director aligns at the

equilibrium angle 64(r) with respect to the normal K to the
air-water interface. But any physical effect that reorients the
director induces flow in the LC phase, which, in turn, is
coupled to the director. This is the so-called backflow [3].
While having a subordinate role, backflow has been found to
qualitatively change the orientational behavior of the director
in electrically driven reorientation. To the lowest order, back-
flow can be considered in a theory by renormalizing the ro-
tational viscosity coefficient y; [4], but this approach is valid
only if reorientation is small. To the high order, backflow can
be accounted for by a numerical study of the full system of
hydrodynamic equations that include both director reorienta-
tion and the velocity field [5]. So, one should expect that the
backflow will also play a crucial role on the reorientation
relaxation on Langmuir films. Measurements of flow-
induced orientation at the molecular level have normally
been performed on Langmuir films where the material ex-
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posed by the flow has been fixed to a solid substrate [6].
However, such an approach does not readily lend itself to the
examination of relaxation phenomena on Langmuir films on
the water surface.

In an attempt to bring the theory and experiment closer
and to gain insight into the importance of the backflow effect
in the relaxation process in the LC film on the water surface,
we have performed a numerical study of the system of hy-
drodynamic equations that include both director motion and
fluid flow. To calculate it, one must include the equation for
the velocity v and consider the coupled director-velocity
equations in the framework of the well-established Ericksen-
Leslie theory [7,8]. So, our main aim is to clarify the influ-
ence of the backflow effect on the orientational relaxation in
the LC film on the water surface.

The outline of this paper is as follows: a system of hydro-
dynamic equations describing both director motion and fluid
flow of a liquid crystal film on the water surface is given in
Sec. II. Numerical results for the number of relaxation re-
gimes describing both the orientational relaxation of the di-
rector and velocity fields as well as the total stress tensor
components are given in Sec. III and IV, respectively. Con-
clusions are summarized in Sec. V.

II. FORMULATION OF THE BALANCE OF THE
MOMENTUM EQUATIONS FOR MULTILAYER LC FILM
ON THE WATER SURFACE

We consider a system composed of asymmetric polar
molecules, such as cyanobiphenyls which are confined to a
flat layer on the water surface. When the LC film is in con-
tact with the water surface, selective ion adsorption takes
place. For instance, the positive ions are attracted by the
water surface, whereas the negative ones are repelled. In this
case, the surface electric field E, originating from the surface
charge density «, will penetrate the film on the order of the
Debye screening length \j [9], owing to ions present in the
LC film (a weak electrolyte). The distance dependence of the
surface electric field with bulk screening is given by [9]
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FIG. 1. The coordinate system specifying the orientation of the
director i and the angle 6(7,z) between the director and the normal

K to the air-water interface.

E(z) = E exp(- Z/AD)ﬁ, (1)

where E=«/(€y€) is the electric field at the charged plane, ¢,
is the dielectric permittivity of free space, €=(€;+2€,)/3 is
the average dielectric permittivity, and €, and €, are the di-
electric constants parallel and perpendicular to the director 1,

respectively, K is a unit vector directed away and perpendicu-
lar to the LC film-water interface, and z is the distance away

from the water surface in the k direction (Fig. 1). So, the
coordinate system defined by our task assumed that the elec-
tric field is applied normal to the LC film-water interface,
and the director i is in the xz plane (or in the yz plane).
Assuming that the electric field E varies only in the z direc-
tion, we can suppose that the components of the director i

=sin 6(z,1)i+cos 68(z, 1)k, as well as the rest of the physical
quantities, also depend only on the z coordinate. Here 6 de-
notes the polar angle, i.e., the angle between the direction of

the director A and the normal K to the air-water interface, iis
the unit vector directed parallel to the air-water interface, and

j=l§><f (Fig. 1). If the director is disturbed, for instance,
during compression, or by the laser beam pulse, and then
allowed to relax, in presence only the external electric field
E, originating from the surface charge density «, the relax-
ation of the director fi to their equilibrium orientation A, is
governed by electric T, elastic T,y and viscous T
torques exerted per unit of LC’s volume. But any physical
effect that reorients the director induces flow in the LC
phase, which, in turn, is coupled to the director. By assuming
an incompressible fluid, the hydrodynamic equations de-
scribing the reorientation of the LC film on the water surface
can be derived from the balance of elastic, viscous, and elec-
tric torques T+ T+ Te=0, and the Navier-Stokes equa-
tion for the velocity field v. Taking into account that the
velocity field v(z,7) in the LC film on the water surface is
excited by only the director reorientation, together with the
incompressibility condition V-v=0, which implies that only
one nonzero component of the vector v exist, viz. v(z,f)

=vx(z,t)12, the Navier-Stokes equation reduces to
pm(?tu(z,t) = &z(fzh (2)

where d,=d/dt, p,, is the mass density, u(z,t)=v,(z,7), and
o, is the viscosity stress tensor component, which can be
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expressed in terms of the six Leslie coefficients «;
(i=1,...,6) as

0, =h(Ou,—2f(0)6,, (3)
where  u,=du(z,1)/dz, h(6)=a, sin’ 6 cos? 6+f(t9)+%a4
+g(6), and f(0)=%(a3 sin® @—a, cos> ) and  g(h)

= (ag sin® + as cos® 6), respectively. In the case of planar
geometry, the viscous and elastic torques takes the form
Tyis+ Teraa=L716,= 3 (71— v2 cos 20)u.~ 3G,(0) 2~ G(0) . ]j.
where  G(6)=(K, sin®> 6+K5cos> 6), 6.=90(z,1)/dz, 6,
=d*0(z,1)13z%, 7y, and 1, are the rotational viscosity coeffi-
cients, and K, and K5 are the splay and bend elastic constants
of the LC film, respectively. The torque due to electric field
E, originating from the water surface charge density «, is
given by T,=eeAXE@-E)=E%(z)/2€y€sin 26(z,1)j.
The torque due to polarization is given by Tp01=P XE
=—P E(z)j, where P is the polarization vector, and P, is the
x component of this vector. The spontaneous polarization in
the LC film, composed of asymmetric polar molecules arises
in response to elastic deformation, and is known as the flexo-
electric effect [10]. In the case of polar molecules (which is
the case for all cyanobiphenyls), splay and bend deforma-
tions give rise to two independent flexoelectric coefficients
(e;,e3), and their combinations to induced polarization
can be written as P=e1ﬁ-Vﬁ—e3ﬁXVXﬁ=Pxf+PZ12
=F(0) GZiA—%(el+e3)sin(20)6'Zl;. So, the torque due to polar-
ization P takes the form T, =~(k/€y€)exp(~z/\p)F(6) HZ'A,
where F(6)=(e; cos? f—e; sin® 6). It should be pointed out
that accounting for the elastic and spontaneous polarization
torques in the torque balance can be justified only in the case
of the multilayer Langmuir film. In the case of the quasi-two-
dimensional system, where the molecules of the Langmuir
film align and tilt relative to the normal 12, and thereby define
an array of unit vectors 4; in the plane x-z of the film, the
torque balance equation describing the reorientation of the
liquid crystal film can be written as

Y16,= A(O)u, + 2G(0) & + G(6) 6.+ B(6) 6. + C(z)sin 26,
“4)

where A(0)=%(71 —y, cos 26), B(6)=F(0)(x/ €y€)
Xexp(—z/\p), and C(Z)=;‘(KZGG/GOEZ)BXP(—zz/)\D), respec-
tively.

To be able to observe the evolution of the polar angle
6(z.1) to their equilibrium orientation 6,4(z) and the evolu-
tion of the velocity field u(z,7), caused by the director i
reorientation to the equilibrium position, we consider the di-
mensionless analog of these equations (2) and (4) in the form

0,= A(Ou, + 82506 +G(0)0. ] + 5506,

+C(z)sin 26, (5)

53{?71’[(1’ T) = (?za-zx’ (6)

where  A(0)=A(0)/y,, G(O)=G(O)/K,, B(O)=F(6)/e,
Xexp(-z), C= % exp(-2z), G.=o0.,/y,. Here 7
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=(e,6E*/y,)t is the dimensionless time, Z=z/\, is the di-
mensionless distance away from the water surface in the LC
film, E=k/ €€, 6,=K,/(€y€,E*\D), Sr=e /(€€ EP\p), 5
=pe,k*\},/ (€y€>y]) are three parameters of the system, and
Np=\€yekpT/2q*n;oys is the Debye screening length [9].
Here g is the proton charge, kp is the Boltzmann constant,
e=¢,(€ cos’ O,+¢€, sin® f,) (a case of the bulk screening),
and n;,, is the bulk ions concentration. Note that the over-
bars in the space variable z, in the last two Egs. (5) and (6),
have been eliminated.

Consider now the LC film on the water surface when the
director n is weakly anchored to the water surface and the
anchoring energy takes the form [3] W= %A sin?(6,— 6,),
where A is the anchoring strength, 6, and 6, are the polar
angles corresponding to the director orientation on the water
surface A, and easy axis €, respectively. The torque balance
transmitted to the surface assumed that the director angle
must satisfy the boundary conditions (see the Appendix)

AN
[06(z)/9z] .o = 2_1(2) sin 2A 4,

G(Z)z=0 = O’ (7)

where Af=0,— 6,, whereas the initial orientation of the di-
rector is disturbed parallel to the interface, with 6(7=0,z)
=7, and then allowed to relax to its equilibrium value 64(z).
Taking into account the case of cyanobiphenyls on the water
surface the more preferable director orientations are homeo-
tropic or oblique [11], and the fact that the velocity field in
the LC film is excited by only the director reorientation, the
no-slip boundary condition on v seems quite reasonable. So,
velocity on the water surface must satisfy the boundary con-
dition
[ﬁu(Z)/&Z]FO = 0,

u(Z)zzo = vx(Z)z:O = 0 (8)

Now the reorientation of the director in the multilayer LC
film on the water surface, when the relaxation regime is gov-
erned by the viscous, elastic, and electric forces, and with
accounting for the backflow, can be obtained by solving the
system of the nonlinear partial differential equations (5) and
(6), with the appropriate boundary and initial 6(0,z)=7 con-
ditions, both for the polar angle 6(7,z) [Eq. (7)] and velocity
u(7,z) [Eq. (8)].

For the case of 4-n-pentyl-4'-cyanobiphenyl (5CB), at
temperature T=300 K and density 10° kg/m?, the experi-
mental data for elastic constants are K;=10.5 pN and K3
=13.8 pN [12], whereas the experimental data for A, ob-
tained using different experimental techniques, are varied be-
tween 10 and 107°J/m2 In the following we use
the calculated data for both flexoelectric coefficients
e;=—11.6 pC/m and e3=4.3 pC/m [13], and the dielectric
constants =18 and €, =8 [14], as well as the measured
v,~0.072 Pas and y,~-0.079 Pas [15], at T=300 K. At
temperature 300 K and density 10° kg/m?, the values of the
six Leslie coefficients were found to be (in Pas) [15]
a;~-0.0066, «a,~-0.075, a3~-0.0035, a,~0.072,
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FIG. 2. The polar angle 6(7,z) [r=(«*€,/ €€ ;)t is a dimen-
sionless time] vs the distance z/\j away from the water surface, for
the case of the multilayer SCB film with the homeotropic alignment
[(ANp/2K3)sin 2(6,— 6,)=0.01] on the water surface, during the
first time term A7=0.01, without accounting for the backflow effect
(a), and with accounting for the backflow effect (b), respectively.

a5~0.048, and ax~—0.03, respectively. The values of the
charge density, estimated to be of the order of «
=10"*-1073 (C/m?) at T=300 K, corresponds to the water
surface charge density n,, in ~10'°—10'® m™2, which agrees
with experimental values ~10-10'm=2 [9]. Here «
=qn,,, where ¢g=1.602X 107! C is the proton charge. The
magnitude of the Debye length depends solely on the prop-
erties of the LC and not on any property of the surface. In the
case of homeotropic alignment of the SCB film on the water
surface (6,=0), the Debye length \,=45 nm. In the case of
homeotropic alignment, when the polar angles 6, and 6, are
both close to 0, A@ is rather small, A0~ 1°—-3°, and there-
fore sin 2A6~2A#6, so the combination of ANp/K; values
varied between 0.04 and 4 X 10™*. The set of parameters,
which are involved in Egs. (5) and (6), are equal to
8,~0.53, 8,~-0.55, and 8~ 107. Using the fact that
8;<<1, the Navier-Stokes equation (6) can be considerably
simplified as the velocity follows adiabatically the motion of
the director. Thus, the whole left-hand side of Eq. (6) can be
neglected and Eq. (6) takes the form

a-zx = [h(e)uz - 2f(0) 07]/71 == C(T) > (9)

where C(7) is the function that does not depend on z and will
be fixed by the boundary conditions.

III. ORIENTATIONAL RELAXATION OF BOTH THE
DIRECTOR AND VELOCITY FIELDS IN THE LC FILM:
NUMERICAL RESULTS

The relaxation of the director A to its equilibrium orien-
tation g, which is described by the polar angle 6(7,z) from
the initial condition 6(0,z)=7 to zero in the multilayer 5CB
film on the water surface at different times ({7=0.0
[curve (1)], ...,0.01 [curve (6)], see Fig. 2}, {r=0.012
[curve (7)], ...,0.02 [curve (11)], see Fig. 3}, {r=0.024
[curve (12)]; 0.028 [curve (13)]; 0.032 [curve (14)]; 0.036
[curve (15)]; 0.04 [curve (16)], see Fig. 4}) have been inves-
tigated by a standard numerical relaxation method [16], at
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FIG. 3. Same as Fig. 2, but the evolution of the polar angle
6(7,z) is shown during the second time term A7=0.02 {r=0.012
[curve (7)]; 0.014 [curve (8)]; 0.016 [curve (9)]; 0.018 [curve (10)];
and 0.02 [curve (11)], respectively}.

the value %’j sin(2A0)=0.01, and results are shown in Figs.
2-4. In all these cases the effect of the backflow on the
relaxation process of the polar angle 6(7,z) in the LC film
are shown in Figs. 2(b), 3(b), and 4(b), whereas the same
relaxation processes, but without accounting for the back-
flow, are shown in Figs. 2(a), 3(a), and 4(a), respectively.
The velocity field u(7,z) excited by reorientation of the di-
rector A to its equilibrium orientation A4, also relaxed with
time to zero, and the results of the calculations are shown in
Fig. 6. In the case of 5CB film on the water surface, with
charge density in k=107 C/m?, and without accounting for
the backflow effect, the director reorientation to its equilib-
rium orientation is characterized by a monotonic decreasing
of the polar angle 6(7,z) with time to zero [Figs. 2(a), 3(a),
and 4(a), respectively], whereas accounting for the backflow
effect is characterized by oscillated decreasing to zero of the
polar angle 6(7,z) with respect to the interface normal [see
Figs. 2(b), 3(b), and 4(b), respectively], and the electric, elas-
tic, and viscous torques finally puts the director into an ori-
entation normal to the interface, with time in one order of the
magnitude smaller than one for the case without accounting
for the backflow. The relaxation of the director n(7,z) to its
equilibrium orientation fgy(z) in the multilayer SCB film on

100 : : :
8ol(a) (12) e

60} g
40}

N
o O

Polar angle ©(z,z) [1 0° rad]

S & 6 oo
© OO W O W

(13)

[ (b) (12) V£0
0.00 0.04 0.08 0.12 0.16 0.20
Dimensionless size z/).

FIG. 4. Same as Fig. 2, but the evolution of the polar angle
0(7,z) is shown during the third time term A7=0.04 {7r=0.024
[curve (12)]; 0.028 [curve (13)]; 0.032 [curve (14)]; 0.036 [curve
(15)]; and 0.04 [curve (16)], respectively}.
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FIG. 5. Plot of relaxation of the polar angle 6(7,z)

[7=(k’€,/ €€ y;)t is a dimensionless time] to its equilibrium value
0cq(z)=0, for the case of the multilayer SCB film on the water
surface, at two dimensionless distances away from the water sur-
face; z/\p=0.1 (a) and 0.15 (b), both without [curves (1)] and with
[curves (2)] accounting for the backflow effect, respectively.

the water surface, being initially disturbed 6(0,z)=7, at two
different distances, z/Ap=0.1 and 0.15 away from the water
surface, are shown in Fig. 5. Calculations show that the elec-
tric, elastic, and viscous torques exerted per LC’s volume are
vanished when the director aligns to be normal to the inter-
face (6=0). In the case of the homeotropic alignment
[(ANp/2K3)sin 2(6,— 6,)=0.01] and with accounting for the
backflow effect, the torques exerted per unit volume puts the
director into an equilibrium orientation with different relax-
ation times; at z/Ap=0.1 with 74,=0.025, whereas at
7/N\p=0.15 with 73=0.022, respectively. It corresponds to
dimension values of the relaxation time in 0.20 us
and 0.18 us, respectively. The relaxation criterion
€=|(60(7g) — Oeq)/ bcg for calculating procedure was chosen to
be equal to 107#, and the numerical procedure was then car-
ried out until a prescribed accuracy was achieved. According
to our calculations, the relaxation time over which the
torques exerted per unit volume vanish, in one order of the
magnitude less in the case of accounting for the backflow
effect than in the case of without accounting for that effect.
The relaxation process of the velocity field u(7,z) in the LC
film on the water surface at the initial stage up to
A7~0.02 is also characterized by the oscillating behavior of
u(7,z) with changing both 7 and z, but with growth of the
time 7, the range of these oscillations decrease, and finally
take a more smooth character [see curves (3) and (4), of
Fig. 6], before getting to the zero value. The absolute
magnitude of the dimension velocity field wv,(¢,z2)
=(\pe,k*1 y,€€)u(7,z) in the LC film on the water surface,
at the final stage of the relaxation process [see, curves (3)
and (4), of Fig. 6] is equal to ~200 wm/s. Note that the
velocity with the first derivative is satisfied by the boundary
conditions (8), on the water surface. Calculations show that
oscillating contribution to the viscous torque, due to account-
ing for the backflow effect, leads to decreasing, at least, in
one order of the magnitude, of the relaxation time during
which the torques exerted per unit LC volume puts the di-
rector into an orientation normal to the interface. Note that
the time dependence 6(7,z) in the LC film with size
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FIG. 6. The dimensionless velocity u(7,z) [u(7,2)
=(y,€€/\pe, kM), (t,2) is the dimensionless velocity] vs the dis-
tance z/Ap away from the water surface, for the case of the
multilayer 5CB  film with the homeotropic alignment
[(ANp/2K3)sin 2(6,— 6)=0.01] on the water surface, during the
time term A=7,—7;=0.012 {7;=0.028 [curve (1)]; 0.032 [curve
(2)]; 0.036 [curve (3)]; and 7,=0.04 [curve (4)], respectively}, when
the magnitude of u(7,z) decreases to zero.

d/\p=0.2 corresponds to the case of the multilayer SCB film
in approximately five layers on the water surface, and the
relaxation time with accounting for the backflow effect is
equal to ~0.15 us, whereas the same time, but without ac-
counting for the backflow effect is equal to ~2 ws. Calcula-
tions also show that the effect of the backflow on the relax-
ation of the director field fi(z, 7) to its equilibrium orientation
increases with increasing of the distance away from the wa-
ter surface. Note that the relaxation processes in the
multilayer SCB film on the water surface have been investi-

gated at the value of the anchoring energy % sin 2A 0

=0.01, the charge density k=107 C/m?, and fixed tempera-
ture ~300 K.

IV. ORIENTATIONAL RELAXATION OF THE TOTAL
STRESS TENSOR COMPONENTS: NUMERICAL RESULTS

Our attention now turns to the viscous stress tensor o;
which also can be obtained directly from the Rayleigh dissi-
pation function D as [17]

0. (1) = dD(7)/du.. (10)

In our case the dissipation function D takes the form D(7)
=R(O)u>~[2(6)/ y,10.u.+ 3 &, where R(G):%ﬁh(ﬁ). Hav-
ing obtained both the dimensionless polar angle 6(7,z) and
velocity u(7,z), one can calculate the integral dissipation
function A(7)=[{D(£)d¢, and two dimensionless stress ten-
sor components 6’21 and &, respectively. Figure 7 shows the
dimensionless integral dissipation function A(7) which
monotonically increases with growth of time and saturates at
different times 7g; in the case of accounting for the backflow
effect with 7, ~0.012, whereas in the case without account-
ing for that effect with time 75~ 0.1, respectively. Such be-
havior of the integrated dissipation function shows that the
system with accounting for the backflow relaxed to the equi-
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FIG. 7. The dependence of the integrated dissipation function
A(7) for the SCB multilayer film with the homeotropic alignment
[(ANp/2K3)sin 2(6,— 6,)=0.01] on the water surface, both without
[curve (1)] and with [curve (2)] accounting for backflow effect.

librium state, approximately, in one order of the magnitude
faster than the system without accounting for that effect. In
the case of planar geometry A=sin 6(z,7)i+cos 6(z,1)k, the
balance of linear momentum becomes P.=—[dD(7)/96,]6.,
where }_’z=(?}_’(z, 7)/dz, and P(z,7) is the viscous contribution

to the total pressure P(z,7). The total pressure P may then
take the form [15]

P(Z,T) =Wy + Wpol — Wetasi — f [&D(T)/&HT] azdz’ (1 1)
where W, = %eo(q +€,co8? O)EXz), W= %PZE(z), and
Welam:%g(ﬁ)ﬁf, are the electric, polarization, and elastic po-
tentials, respectively. Having obtained the total pressure
P(z,7), one can calculate, using the Ericksen-Leslie theory
[7,8], the normal components of the total stress tensor oéz
and o,. Note that in our case o} =0. Taking into account
that in the vicinity of the LC film-air interface the component
of the total stress tensor oéz is equal to zero, and in our case

the dimensionless stress tensor components EJZZ(Z,T) and
. (z,7) take the form

7= K(z) - Ki(d/\p) - C(2)(€, /€, + cos® 6)
+ C(dINp)(1 + €, /€,) + 3 sin 26K, (6,u)
+ 8[K5(z) = K5(dINp) + K4(0)], (12)

7= K1(2) + K (dINp) — C(z)(e, /€, + cos® )
+ C(dINp)(1 + €, /€,) + 3 sin 260/C5(6,u) + &[K5(2)
+K5(dINp) + Ks(0)]+ (8,G(6) - 8,) 62, (13)

K1(z)=J3C(2)sin(20) 0.dz,  K5(0,u)=[(e; cos’ @
rau—nbll v, Ki@=[iB(O)fdz, K 0)=1i01
+e3/e,)sin(26) 6, exp(-z), Ks(0,u)=[(a; sin® 6+ as)u,
- %01/ v, and 54=(,%2§)2 Kioe,' In our case the last param-
eter §,=0.0012. The relaxation of the dimensionless compo-
nents of the total stress tensor @..(z,7) and &,(z,7) to their

where
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FIG. 8. Plot of relaxation of the dimensionless component of the
stress tensor &.,(z,7) [7=(x%€,/ €€ y))t is a dimensionless time] to
its equilibrium value, for the case of the multilayer 5CB film on the
water surface, at dimensionless distance away from the water sur-
face z/Ap=0.1 (a) and 0.05 (b), both without [curves (1)] and with
[curves (2)] accounting for the backflow effect, respectively.

equilibrium values in the multilayer SCB film on the water
surface, at two different distances, z/A\p=0.1 and 0.05 away
from the water surface, are shown in Figs. 8 and 9. The
relaxation process of the total stress tensor component
Efu(z, 7) in the LC film on the water surface, in the case of
accounting for the backflow effect, at the initial stage up to
A7,~0.02 is characterized by oscillating behavior of
7..(z,7) with changing of 7. Calculations of the absolute
magnitude of o’;=(e,x*)/(€,€)d,; (i=x,z) shows that under
the influence of the forces exerted per LC’s unit volume the
component of the total stress tensor o, is characterized by
the increase of |o? | up to 7 10* Pa within the initial stage
of the relaxation process (A7,.~0.01), and fast decreasing of
|| up to zero, within the last stage of the relaxation pro-
cess. Note that in the vicinity of the air-LC film interface
lim,_, &”(z)=0. Figure 9 show that the dimensionless com-
ponent of the total stress tensor &, (z, 7) relaxed to zero with
the relaxation time A7, ~0.016 (~0.12 us), and the relax-
ation process in the case of accounting for the backflow ef-
fect is characterized by oscillating behavior of &, at the
initial stage of evolution up to A7, ~0.014 (~0.105 us).
Having obtained the relaxation time of the stress tensor com-
ponent & directed parallel to the x axis, the relaxation time
of the LC film on the water surface during the lateral com-
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FIG. 9. Same as Fig. 8, but the evolution of the dimensionless
component of the stress tensor chx(z,r) to its equilibrium value.
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FIG. 10. Plot of relaxation of the dimensionless shear
n(r.2)=n/y (a) and compression 7.(7.2)=7/y; (b)
[7=(k%€,/ €,€ )t is a dimensionless time] viscosities to their equi-
librium values 7 (eq), at dimensionless distance away from the
water surface z/Np=0.04 [curve (1)] and 0.1 [curve (2)],
respectively, for the case of homeotropic alignment
(ANp/2K3)sin 2(6,—6,)=0.01 of 5CB molecules at the water
surface.

pression can be estimated as A7,=A7,,~0.016 (~0.12 us).

In an attempt to bring the theory and experiment closer
we have performed a numerical study of the viscous coeffi-
cients, one for compression 7., and another for shear 7.
Having obtained both the dimensionless stress tensor com-
ponent &, (7)=R(Ou.—-[2f(6)/y,]0, and the velocity
u(7,z), one can calculate the dimensionless shear viscosity
coefficient n(=n,,) as 0.(7,2)=70u(7,2)/dz="7u.(7,2),
or

7, =R(0) = 2f(6) 0/ (u,), (14)

and the compression viscosity 7.(=7,,) as

D= 0T, 2)u,(7,2). (15)

The relaxation of the dimensionless viscosities 7,=7,/7,
and .=,/ to their equilibrium values in the multilayer
5CB LC film on the water surface, at two different distances
7Z/Ap=0.04 (close to the water surface) and 0.1 (in the
middle part of the film) are shown in Figs. 10(a) and 10(b).
The relaxation processes of these viscosities, at initial stage,
up to A7~0.03 (~0.23 us) are characterized by oscillating
behavior both 7,.(7) and 7,(7) with changing of 7. Figure 10
shows that the dimension shear viscosity 7,(7) relaxed to
lim,_a, n(7)— neq) ~1.4y,, whereas the dimension
compression viscosity 7,.(7) relaxed to lim,_a, 7.(7)
— 7.(eq) ~ 12.4y,, practically with the same relaxation time
ATy~ 0.06 (~0.45 us).

V. CONCLUSION

In summary, we have investigated the relaxation of the
director R(r,z) to its equilibrium orientation R, (r) on
4-n-pentyl-4'-cyanobiphenyl multilayer film on the water
surface during the lateral compression of the film. Our simu-
lations, in the framework of the classical Ericksen-Leslie
theory, prove that to describe dynamical reorientation of the
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director correctly, one must include a proper treatment of
backflow. To the high order, backflow must be accounted for
by a numerical study of the full system of the hydrodynamic
equations that include both the director reorientation and the
velocity flow. In order to elucidate the role of the charged
water surface on the relaxation process, we take into account
only the long-range component (due to the surface electric
field) of the surface potential. A balance among the electric,
elastic, and viscous torques exerted on the director is re-
flected in the relaxation of the director to its equilibrium
position to be normal to the interface. We believe that the
present investigation can shed some light on the problem of
the reorientation processes in Langmuir films at the air-liquid
interface.
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APPENDIX

In the case of the weak anchoring the relevant boundary
equilibrium condition for the polar angle 6 is given by
[3,17,18] 2~ 2¥=0, at z=0, where W,= W+ Wyo+ Wejgg is
the total energy of the LC system composed by electric Wy,
=%€0(€ | +€,cos? O)E*(z), polarization Wpo1=F(60) 0.E(2),
and elastic We]astzég(ﬂ)b‘? potentials, whereas W
= %A sin?(6,— 6,) is the anchoring energy, respectively. In the
limiting case lim, ., 6—0, this leads to the boundary re-
quirement (;—'zg)zz():%z sin 2A 0+ A€, where the last term Ae
=es\pk/K3;~107* is the effect of the polarization to the
torque balance equation transmitted to the LC film/water in-
terface. The combination of ;‘—z values varied between 0.2
and 0.02, so, the last term on the right-hand side of the
torque equation can be neglected and the boundary condition
for the polar angle # must satisfy Eq. (7). In the case of
no-slip boundary condition on v and the limiting case
lim, ,, 6—0, the interfacial linear momentum balance pro-
vide the extra condition on (u,)._q as ﬁ(—a3+a4+ as)
X (u,),=0=0 or (u,).—o=0.
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